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Abstract 
In this paper the image denoising based on ridgelet transforms gives better result in imagedenoising than 

standard wavelet transforms. In this project we introduces  an new approach for image denoising that is based on 
ridgelets computed in a localized manner and that is computationally less intensive than curvelets, but similar 
donising performance. The projection of image  at a certain angle is computed at a certain angle, but only on a 
defined slice of the noisy image. After that ridgelet transform of each slice is computed , to produce the ridgelet 
coefficients for an image.The denoising operation corresponds to a simple thresholding  of these ridgelet 
coefficients. 

The new method for image denoising technique is based on two operations: one is the redundant directional 
wavelet transform based on the radon transform, and thresholding of the ridgelet coefficient. 

The image denoising algorithm with the ridgelet transform can be described by the following operations. 
First , add the noise to an image and than projection(radon transform) is computed at a certain angle of the noise 
image. After that, the ridgelet transform of this  projection of the noise image is computed and the noise component 
is reduced by simple thresholding of the ridgelet coefficient.  Then, the inverse ridgelet transform is computed to get 
back the denoised version of that projection of slice at the same angle. Although the shape of the reconstructed 
object can be seen, the reconstructed image is heavily blurred. To counteract this effect, a high pass filter is applied 
to the sinogram data in the frequency domain.  This is achieved by applying a 1-D DFT to the sinogram data for 
each angle, multiply by the filter, and then using the inverse DFT to reconstruct the data. The simplest form of high 
pass filter is a ramp. Applying the ramp filter significantly improves the quality of the reconstructed image. 
However, because the ramp filter emphasises high frequency components of the image, it can cause unwanted noise. 
To counteract this, several other high-pass filters are commonly used. In this project we are using Adaptive 
Filtering. The wiener2 function applies a Wiener filter (a type of linear filter) to an image adaptively, tailoring itself 
to the local image variance. Where the variance is large, wiener2 performs little smoothing. Where the variance is 
small, wiener2 performs more smoothing. This approach often produces better results than linear filtering. The 
adaptive filter is more selective than a comparable linear filter, preserving edges and other high-frequency parts of 
an image. In addition, there are no design tasks; the wiener2 function handles all preliminary computations and 
implements the filter for an input image. wiener2. 

However, it does require more computation time than linear filtering. Wiener2 works best when the noise is 
constant-power ("white") additive noise, such as Gaussian noise.  
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Introduction
Image denoising is one of the most popular 

research fields in image processing due to fact that it is 
extremely difficult to form a general global denoising 
scheme effective for all types of noise as well as all types 
images. A common problem in image denoising is the 
blurring of the prominent edges in the image which can 
cause discrepancies when the denoising operation is 

combined with other operations such as image edge 
detection and segmentation. Notewothy schemes for 
image denoising based on transforms such as wavelets, 
curvelets, exploit redundancy and thresholding to remove 
the noise without blurring the edges. 

The important characteristic of the denoising 
technique introduced in this project is that it can reduce 



[Naik, 2(10): October, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[2914-2921] 

 

considerably the noise without destroying the edges of 
the objects in the image. That is , the noise is well 
attenuated but the edge information is preserved. The 
new method for image denoising technique is based on 
two operations: one is the redundant directional wavelet 
transform based on the ridgelet transform, and 
thresholding of the ridgelet coefficient. 

 The image denoising algorithm with the 
ridgelet transform can be described by the following 
operations. First, add the noise to an image and 
thanprojection(ridgelet transform) is computed at a 
certain angle, but only on a defined silce of the noise 
image. After that, the ridgelet transform of this  
projection of the noise image is computed and the noise 
component is reduced by simple thresholding of the 
ridgeletcoefficient.Then, the inverse ridgelet transform is 
computed to get back the denoised version of that 
projection of the defined slice at the same angle. 
Although the shape of the reconstructed object can be 
seen, the reconstructed image is heavily blurred. To 
counteract this effect, a high pass filter is applied to the 
sinogram data in the frequency domain. The wiener2 
function applies a Wiener filter (a type of linear filter) to 
an image adaptively, tailoring itself to the local image 
variance. Where the variance is large, wiener2 performs 
little smoothing. Where the variance issmall, wiener2 
performs more smoothing. This approach often produces 
better results than linear filtering.   

The adaptive filter is more selective than a 
comparable linear filter, preserving edges and other high-
frequency parts of an image. In addition, there are no 
design tasks; the wiener2 function handles all 
preliminary computations and implements the filter for 
an input image. wiener2, however, does require more 
computation time than linear filtering. wiener2 works 
best when the noise is constant-power ("white") additive 
noise, such as Gaussian noise. 
 
Experimental Design and Setups  
Radon Transform: The Radon transform of an  image is 
the sum of the Radon transforms of each individual pixel. 
The algorithm first divides pixels in the image into four 
subpixels and projects each subpixel separately. 
 

 
Figure 1.Subpixel Projection 

 
Each subpixel's contribution is proportionally 

split into the two nearest bins, according to the distance 
between the projected location and the bin centers. If the 
subpixel projection hits the center point of a bin, the bin 
on the axes gets the full value of the subpixel, or one-
fourth the value of the pixel. If the subpixel projection 
hits the border between two bins, the subpixel value is 
split evenly between the bins. 
 
Radon Transformation Definition 

The radon function computes projections of an 
image matrix along specified directions. A projection of 
a two-dimensional function f(x,y) is a set of line 
integrals. The radon function computes the line integrals 
from multiple sources along parallel paths, or beams, in a 
certain direction. The beams are spaced 1 pixel unit 
apart. To represent an image, the radon function takes 
multiple, parallel-beam projections of the image from 
different angles by rotating the source around the center 
of the image. The following figure shows a single 
projection at a specified rotation angle. 
 
Parallel-Beam Projection at Rotation Angle Theta 

 
Figure 2.Parallel beam Projection. 

For example, the line integral of f(x,y) in the 
vertical direction is the projection of f(x,y) onto the x-



[Naik, 2(10): October, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[2914-2921] 

 

axis; the line integral in the horizontaldirection is the 
projection of f(x,y) onto the y-axis. The following figure 
shows horizontal and vertical projections for a simple 
two-dimensional function. 

 
Figure 3. Horizontal and vertical Projection. 

Projections can be computed along any angle . In 
general, the Radon transform of f(x,y) is the line integral 
of f parallel to the y´-axis 

 
Where 

 
The following figure illustrates the geometry of the 
Radon transform. 
 

 
Figure 4.Randon transform projection 

Geometry of the Radon Transform  
This command computes the Radon transform 

of I for the angles specified in the vector theta. 
• [R,xp] = radon(I,theta); 

The columns of R contain the Radon transform for each 
angle in theta. The vector xp contains the corresponding 

coordinates along the x´-axis. The center pixel of I is 
defined to be floor((size(I)+1)/2); this is the pixel on the 

x´-axiscorresponding to . 
The Radon transform of an image represented 

by the function f(x,y) can be defined as a series of line 
integrals through f(x,y) at different offsets from the 
origin. It can be defined mathematically as  

 
where p and tau are the slope and intercepts of the line.  
 
            A more directly applicable form of the transform 
can be defined by using a delta function: 

 
where theta is the angle of the line, and r is the 
perpendicular offset of the line. 

 
Figure 5. Radon transform projection angle theta,tau 

 
Radon Transform 

 The acquisition of data in medical imaging 
techniques such as MRI, CT and PET scanners involves 
a similar method of projecting a beam through an object, 
and the data is in a similar form to that described in the 
second equation above. The plot of the Radon transform, 
or scanner data, is  referred to as a  sinogram due to its 
characteristic sinusoid shape. The Figure shows a simple 
non-homogeneous shape and the sinogram created by 
taking the Radon transform at intervals of one degree 
from 0 to 180 degrees.The sinogram  produced by 
applying the Radon Transform 
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.  
Figure 6.Radon transform scanner data (Sinogram) 

 
Invers Radon TransformUsing filtered back 
Projection  

To reconstruct the image from the sinogram, the 
inverse Radon transform is applied to the image. There 
are several techniques by which the inverse transform 
can be calculated but the most common is Filtered Back 
Projection. The filtered back projection algorithm is split 
into two phases, filtration and projection. 
 
Projection 

The projection phase is very similar to the 
Radon transform described above, and shown inFigure  
except now the line integrals are projected back onto the 
plane at their respective angles. The projection phase of 
the Filtered Back Projection, using the data format 
described above: 

 
where f' is the filtered data. 
A common discrete approximation of this is: 

 
This equation can be used to determine the pixel 

values at a given point. The exact values depend on the 
chosen interpolation method, e.g. nearest-neighbour, 
linear interpolation etc. As more projections are added, 
the quality of the reconstruction will increase. This is 
clearly not enough to accurately reconstruct the image, 
but the individual projections can be seen. the result of 
the back projection algorithm applied as described and 
using all available data. Although the shape of the 
reconstructed object can be seen, the reconstructed image 
is heavily blurred. To counteract this effect, a high pass 
filter is applied to the sinogram data in the frequency 
domain.   

This is achieved by applying a 1-D DFT to the 
sinogram data for each angle, multiply by the filter, and 
then using the inverse DFT to reconstruct the data. The 
simplest form of high pass filter is a ramp. Applying the 

ramp filter significantly improves the quality of the 
reconstructed image. However, because the ramp filter 
emphasises high frequency components of the image, it 
can cause unwanted noise. To counteract this, several 
other high-pass filters are commonly used. See the 
reference for a full discussion, including derivations, on 
the use of filtration. 
 
Adaptive filter 

The wiener2 function applies a Wiener filter (a 
type of linear filter) to an image adaptively, tailoring 
itself to the local image variance. Where the variance is 
large, wiener2 performs little smoothing. Where the 
variance is small, wiener2 performs more 
smoothing.This approach often produces better results 
than linear filtering. The adaptive filter is more selective 
than a comparable linear filter, preserving edges and 
other high-frequency parts of an image. 

In addition, there are no design tasks; the 
wiener2 function handles all preliminary computations 
and implements the filter for an input image. wiener2, 
however, does require more computation time than linear 
filtering. wiener2 works best when the noise is constant-
power ("white") additive noise, such as Gaussian noise. 
 
Discrete Wavelet Transform 
Introduction: The Discrete Wavelet Transform 
(DWT) involves choosing scales and positions based on 
powers of two. So called dyadic scales and positions. 
The mother wavelet is rescaled or dilated by powers of 
two and translated by integers. Specifically, a function 

f(t)  L2(R) (defines space of square integrable 
functions) can be represented as 
 

 
 

The function ψ(t) is known as the mother 
wavelet, while φ(t) is known as the scaling Function. The 
set of functions 

 

 
 

Where Z is the set of integers is an orthonormal basis for 
L2(R). 

 
The numbers a(L, k) are known as the 

approximation coefficients at scale L, while d(j,k) are 
known as the detail coefficients at scale j. 
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The approximation and detail coefficients can 
be expressed as: 

 
 

 To provide some understanding of the above 
coefficients consider a projection fl(t) of the function f(t) 
that provides the best approximation (in the sense of  
minimum error energy) to f(t) at a scale l. This projection 
can be constructed from the coefficients a(L, k), using 
the equation 

 
As the scale l decreases, the approximation 

becomes finer, converging to f(t) as l → 0. The 
difference between the approximation at scale l + 1 and 
that at l, fl+1(t) - fl(t), is completely described by the 
coefficients d(j, k) using the equation 
 

 
 Using these relations, given a(L, k) and {d(j, k) | 
j ≤ L}, it is clear that we can build the approximation at 
any scale. Hence, the wavelet transform breaks the signal 
up into a coarse approximation fL(t) (given a(L, k)) and a 
number of layers of detail {fj+1(t)-fj(t)| j < L} (given by 
{d(j, k) | j ≤ L}). As each layer of detail is added, the 
approximation at the next finer scale is achieved. 
 
Vanishing Moments 
 The number of vanishing moments of a wavelet 
indicates the smoothness of the wavelet function as well 
as the flatness of the frequency response of the wavelet 
filters (filters used to compute the DWT).Typically a 
wavelet with p vanishing moments satisfies the following 
equation . 
 

 
or equivalently, 
 

 
 For the representation of smooth signals, a 

higher number of vanishing moments leads to a faster 
decay rate of wavelet coefficients. Thus, wavelets with a 
high number of vanishing moments lead to a more 
compact signal representation and are hence useful in 
coding applications.  

 However, in general, the length of the filters 
increases with the number of vanishing moments and the 
complexity of computing the DWT coefficients increases 
with the size of the wavelet filters. 
 
The Fast Wavelet Transform Algorithm: 

The Discrete Wavelet Transform (DWT) 
coefficients can be computed by usingMallat.s Fast 
Wavelet Transform algorithm. This algorithm is 
sometimes referred to asthe two-channel sub-band coder 
and involves filtering the input signal based on 
thewavelet function used. 
 
Implementation Using Filters 

To explain the implementation of the Fast 
Wavelet Transform algorithm consider the following 
equations: 
 

 
 
 The first equation is known as the twin-scale 
relation (or the dilation equation) and defines the scaling 
function φ. The next equation expresses the wavelet ψ in 
terms of the scaling function φ. The third equation is the 
condition required for the wavelet to beOrthogonal to the 
scaling function and its translates. 

The coefficients c(k) or {c0, .., c2N-1} in the 
above equations represent the impulse response 
coefficients for a low pass filter of length 2N, with a sum 
of 1 and a norm of1/2. 

The high pass filter is obtained from the low 
pass filter using the relationshipg ( )k c( k ) k = −1 1− , 
where k varies over the range (1 . (2N . 1)) to 1. 

The first Equation shows that the scaling 
function is essentially a low pass filter and is used to 
define the approximations. The wavelet function defined 
by equation (second) is a highpass filter and defines the 
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details.Starting with a discrete input signal vector s, the 
first stage of the FWT algorithm decomposes the signal 
into two sets of coefficients. These are the approximation 
coefficients cA1 (low frequency information) and the 
detail coefficients cD1 (high frequency information), as 
shown in the figure below. 
 

 
Figure 7.FWT decomposing of coefficients 

 
The coefficient vectors are obtained by 

convolving s with the low-pass filter Lo_D for 
approximation and with the high-pass filter Hi_D for 
details. This filtering operation is then followed by 
dyadic decimation or down sampling by a factor of 
2.Mathematically the two-channel filtering of the 
discrete signal s is represented by theexpressions: 

 
 

These equations implement a convolution plus 
down sampling by a factor 2 and give the forward fast 
wavelet transform. 
            If the length of each filter is equal to 2N and the 
length of the original signal s is equal to n, then the 
corresponding lengths of the coefficients cA1 and cD1 
are given by the formula: 

 
            This shows that the total length of the wavelet 
coefficients is always slightly greater than the length of 
the original signal due to the filtering process used. 
 
Multilevel Decomposition: 
  The decomposition process can be iterated, 
with successive approximations being  decomposed in 
turn, so that one signal is broken down into many  lower  
resolutionComponents. This is called the wavelet 
decomposition tree. 
 

 
Figure 8. Multilevel Decomposition  

The wavelet decomposition of the signal s analysed at 
level j has the following structure[cAj, cDj, ..., 
cD1].Looking at a signals wavelet decomposition tree 
can reveal valuable information. The diagram below 
hows the waveletdecomposition to level 3 of a sample 
signal S. 

 
Figure 9.Multilevel Decomposition level 3 of a sample signal 

S 
 

Since the analysis process is iterative, in theory 
it can be continued indefinitely. In reality, the 
decomposition can only proceed until the vector consists 
of a single sample. Normally, however there is little or 
no advantage gained in decomposing a signal beyond a 
certain level. The selection of the optimal decomposition 
level in the hierarchy depends on the nature of the signal 
being analysed or some other suitable criterion, such as 
the low-pass filter cut-off. 
 
Signal Reconstruction: 

The original signal can be reconstructed or 
synthesised using the inverse discrete wavelet transform 
(IDWT). The synthesis starts with the approximation and 
detail coefficients cAj and cDj, and then reconstructs 
cAj-1 by up sampling and filtering with the 
reconstruction filters. 
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Figure 10. Signal synthesizer (Signal Reconstruction) 

 The reconstruction filters are designed in such a 
way to cancel out the effects of aliasing introduced in the 
wavelet decomposition phase. The reconstruction filters 
(Lo_R and Hi_R) together with the low and high pass 
decomposition filters, forms a system known as 
quadrature mirror filters (QMF). 
 For a multilevel analysis, the reconstruction 
process can itself be iterated producing successive 
approximations at finer resolutions and finally 
synthesising the original signal. 
 
Results & Discussion  

The wiener2 function applies a Wiener filter (a 
type of linear filter) to an image adaptively, tailoring 
itself to the local image variance. Where the variance is 
large, wiener2 performs little smoothing. Where the 
variance is small, wiener2 performs more 
smoothing.This approach often produces better results 
than linear filtering. The adaptive filter is more selective 
than a comparable linear filter, preserving edges and 
other high-frequency parts of an image. In addition, there 
are no design tasks; the wiener2 function handles all 
preliminary computations and implements the filter for 
an input image. wiener2, however, does require more 
computation time than linear filtering. wiener2 works 
best when the noise is constant-power ("white") additive 
noise, such as Gaussian noise. 
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Figure 11.a).Original Image, b). Noisy Image, c)Denoised  
Image for slice, 1 d).Denoised  Image for slice2, 

e).Denoised  Image for slice 3, f).Denoised  Image for slice 4, 
g).Denoised  Image for slice, 5 h).Denoised  Image for slice 

6, i).Denoised  Image for slice 7, j).Denoised  Image for slice 
8, k).Denoised  Image 

 
Conclusion 

In this Thesis, we presented a strategy for 
digitally implementing the sliced ridgelet transforms. 
The resulting implementations have the exact 
reconstruction property, give stable reconstruction under 
perturbations of the coefficients, and as deployed in 
practice, partial reconstructions seem not to suffer from 
visual artifacts. 

There are, of course, many competing strategies 
to translate the theoretical results on ridgelets  into digital 
representations. Guided by a series of experiments, we 
arrived at several innovative choices which we have 
highlighted in this thesis. 
 
References 

[1] Averbuch, R. R. Coifman, D. L. Donoho, M. 
Israeli, and J. Waldén, “Polar FFT, rectopolar 
FFT, and applications,” Stanford Univ., 
Stanford, CA, Tech. Rep., 2000. 

[2] E. J. Candès, “Harmonic analysis of neural 
netwoks,” Appl. Comput.Harmon. Anal., vol. 6, 
pp. 197–218, 1999. 

[3]  “Monoscaleridgelets for the representation of 
images with edges,”Dept. Statist., Stanford 
Univ., Stanford, CA, Tech. Rep., 1999, 
submitted for publication. 



[Naik, 2(10): October, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[2914-2921] 

 

[4]  “On the representation of mutilated Sobolev 
functions,” Dept. Statist., Stanford Univ., 
Stanford, CA, Tech. Rep., 1999. 

[5] E. J. Candès and D. L. Donoho, “Curvelets,” 
[Online] Available:http://www-
tat.stanford.edu/~donoho/Reports/1999/curvelet
s.pdf, 1999. 

[6]  “Curvelets—A surprisingly effective 
nonadaptiverepresentationfor objects with 
edges,” in Curve and Surface Fitting: Saint-
Malo 1999,A. Cohen, C. Rabut, and L. L. 
Schumaker, Eds. Nashville, TN: Vanderbilt 
Univ. Press, 1999. 

[7]  “Ridgelets: The key to higher-dimensional 
intermittency?,” Phil.Trans. R. Soc. Lond. A., 
vol. 357, pp. 2495–2509, 1999. 

[8] G.Y. Chen, T.D. Bui, A. Krzy˙zak, Image 
denoising with neighbour dependency and 
customized wavelet and threshold, Pattern 
Recognition 38 (1) (2005) 115–124. 

[9] L. Sendur, I.W. Selesnick, Bivariate shrinkage 
functions for waveletbaseddenoising exploiting 
interscale dependency, IEEE Trans. Signal 
Process. 50 (11) (2002) 2744–2756. 

[10] L. Sendur, I.W. Selesnick, Bivariate shrinkage 
with local variance estimation, IEEE Signal 
Process. Lett. 9 (12) (2002) 438–441. 

[11] D.L. Donoho, A.G. Flesia, in: J. Stoecker, G.V. 
Welland (Eds.), Digital ridgelet transform based 
on true ridge functions, Beyond Wavelets, 
Academic Press, New York, 2001. 

[12] G.Y. Chen, T.D. Bui, A. Krzy˙zak, Rotation 
invariant pattern recognition using ridgelet, 
wavelet cycle-spinning and Fourierfeatures, 
Pattern Recognition 38 (12) (2005) 2314–2322. 

[13] J.L. Starck, E.J. Candes, D.L. Donoho, 
Astronomical image representation by the 
curvelet transform, Astron. Astrophys. 2 (2003) 
785–800. 

[14] J.L. Starck, E.J. Candes, D.L. Donoho, The 
curvelet transform for image denoising, IEEE 
Trans. Image Process. 11 (6) (2002)670–684. 


